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Modulated scale-free network in Euclidean space
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A random network is grown by introducing at unit rate randomly selected nodes on the Euclidean space. A
node is randomly connected to itsi th predecessor of degreeki with a directed link of length, using a
probability proportional toki,

a. Our numerical study indicates that the network is scale free for all values of
a.ac and the degree distribution decays stretched exponentially for the other values ofa. The link length
distribution follows a power law:D(,);,d, whered is calculated exactly for the whole range of values ofa.
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Statistical properties of many different networks are be
studied recently with much interest. Examples include
World Wide Web@1#, the internet structure@2#, neural net-
works @3#, collaboration network@4#, etc. Broadly these net
works are classified into four different groups, namely,~i!
networks on regular lattices,~ii ! random networks@5# ~iii !,
small-world networks@6#, and~iv! scale-free networks@7,8#.

It has been observed that the degree distributions of no
for two very important networks, e.g., World Wide Web@1#
which is a network of webpages~nodes! and the hyperlinks
~links! among various pages and the internet network@2# of
routers or autonomous systems follow power law as

P~k!;k2g. ~1!

These networks are called scale-free networks and the e
nentg varies between 2 and 3 for these networks. Barab´si
and Albert ~BA! proposed a simple model for an evolvin
SFN that has the following two essential ingredients.

~i! A network grows from an initial set ofmo nodes with
m,mo links among them. Further, at every time step a n
node is introduced and is randomly connected tom previous
nodes.

~ii ! Any of thesem links of the new node introduced a
time t connects a previous nodei with an attachment prob
ability p i(t) which is linearly proportional to the degre
ki(t) of the i th node at timet,

p i
BA~ t !;ki~ t !. ~2!

For the BA modelg53 @8#.
The physical distance, or the Euclidean distance betw

the nodes plays an important role in cases such as elec
networks, the internet, or even in postal and transport
works, etc. In these networks one tries to minimize
lengths of the connections, e.g., electrical wires, ethe
cables, or say travel distances of postal carriers. Static
works, in which connection probabilities depend on the E
clidean distance have already been considered in the co
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of small-world properties@9#. Recently, a number of interes
ing works in the context of SFN have been publish
@10,11#.

Study of the internet’s topological structure is importa
for designing efficient routing protocols and modeling inte
net traffic. Waxman model describes the internet with ex
nentially decaying link length distribution:D(,);exp
(2,/,o) @12#. Faloutsoset al. observed the scale-free degre
distribution of the internet@2#. Yook et al. observed that
nodes of the router level network maps of North America
distributed on a fractal set and the link length distribution
inversely proportional to the link lengths@13#. They also
argued that a competition exists between the preferentia
tachment of the nodes and the weightage of the link leng
@13#.

In this paper our aim is to study how a scale-free netw
defined on the Euclidean space behaves when the usua
attachment probability as in Eq.~2! is modulated by a link
length , dependent factor,a. Our important observation is
even for the uniform random distribution of nodes we obta
the power law variation of the link length distribution for a
values ofa including the empirically observed inverse vari
tion whereas the Waxman’s exponential behavior is ne
observed. We argue that for a country with homogeneou
distributed router density, our results seem to be importa

Specifically in two dimensions, we consider an un
square area on thex-y plane. Randomly selected poin
within this area are the nodes of the network. The netw
grows by systematically introducing one node at a time w
randomly chosen coordinates (x,y);0<x,y,1 with uniform
probabilities. The attachment probability that the new no
introduced at timet would be connected to itsi th predeces-
sor (0< i<t21) is

p i~ t !;ki~ t !,a, ~3!

where, is the Euclidean distance between thetth and thei th
node anda is a continuously varying parameter.

The case witha50 is the usual BA model. For the nega
tive values ofa, the largest value of the modulation facto
,a corresponds to the smallest value of,. Therefore, in the
limit of a→2`, only the smallest value of, corresponding
to the nearest node will contribute with probability 1. Sim
larly, for a.0 large, values will be more probable and th
©2002 The American Physical Society14-1
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limit of a→1` corresponds to only nonzero contributio
from the furthest node~Fig. 1!.

We start with only one initial node corresponding tom
5mo51 and connect a new node to only one of its previo
nodes. Therefore, every node has only one outgoing
(kout51) but can have a number of incoming links (kin).
The network thus formed has a tree structure, without
loops. Similar to the BA model, we expect that the ma
results of our model should be robust with respect to
value ofmo used@8#.

The link lengths of this network vary over a wide rang
We defineD(,)d, as the probability that a randomly se
lected link has the length between, and,1d, and assume
a power law distributionD(,);,d. Since the network with
a50 has no length dependence and since the nodes ar
cated in random positions in space with uniform probab
ties,D(,) for a50 should depend only on the volume of th
spherical shell between, and,1d, andD(,);,d21 in the
d-dimensional space. ForaÞ0, this distribution is modified
by the factor,a of Eq. ~3! giving

D~, !;,a1d21, ~4!

FIG. 1. Modulated scale-free networks within a unit square
different values of the modulation parametera for the same distri-
bution of 512 nodes. Fora51` and2` a newly introduced node
is linked only to its farthest and nearest predecessors, respect
whereas fora50 it is connected to one of the previous nod
according to the BA rule.
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which implies d(a)5a1d21. Therefore, at a particula
value ofa5ac512d, d(a)50 and the distribution is uni-
form in any dimension.D(,) grows with , for a.ac and
decays with, for a,ac . Growing, uniform, and decaying
distributions are shown in Fig. 2~a! for different values ofa
which confirmac521 in d52. Similar calculations ind
51 show uniform distribution forac50.

Since we distribute nodes within the unit square and l
lengths are measured using the periodic boundary condit
along both thex andy directions, the distance between an
two nodes can be at most,o5221/2. Consequently, all ori-
entations of links of lengths up to 1/2 are equally like
However, links of lengths greater than 1/2 have to be o
ented more towards diagonal directions, i.e.,y56x lines to
properly fit in and therefore their orientations are not equa
likely. This anisotropic effect is observed ind52 when
D(,) decays at a faster rate for 1/2,,,,o since isotropy of
the orientation of these links is lost and therefore they

r

ly, FIG. 2. ~a! The probability density distributionD(,) of the link
lengths , in d52 for five different a values: 1/2 ~circle!, 0
~square!, 21/2 ~diamond!, 21 ~triangle up!, and 23/2 ~triangle
left! for networks ofT5212. ~b! d(a) varies linearly witha for
a.24 in d52 and fora.22 in d51. The saturation values o
d are23 and22 for d52 ~filled circle! andd51 ~opaque circle!,
respectively.~c! Scaling of the probability density fora52` and
for T5211, 213, and 215 in d52.
4-2
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less probable. In contrast, we do not see such a region in
dimension, in agreement with the theoretical analysis.

However,d(a) saturates at a minimum valuedm below a
certain value ofa which is calculated exactly in the limit o
a→2`. Since, in this limit a new node is always connect
to its closest neighbor, the probability that the (t11)-th node
has a link of length between, and,1d, is

Dt~, !d,5a,d21t~12b,d! t21d,, ~5!

whereb,d is the volume of a hypersphere ind dimensions
anda5bd. Therefore, for a network evolved up to a timeT,
the link length distribution of the whole network is

D~, !d,5(
t51

T
Dt~, !d,5a,d21d,(

t51

T
t~12b,d! t21.

~6!

In the limit T→` this series converges for large, to D(,)
;,2d21 giving dm52(d11). However, for small,,
D(,)5c1,d212c2,2d21, ignoring higher-order correction
wherec1;O(t2) andc2;O(t3) for larget. This implies that
D(,) must have a maximum at,;T 21/d for all d.1, as
verified below by the scaling analysis. For one dimensi
however, no such maximum is expected and the power
decay starts right from the small values of,. Again, sinced
varies linearly witha as d(a)5a1d21 in general, the
minimum valuedm is attained ata522d and remains same
for smaller values ofa.

Our numerical findings nicely support these results:
check thatd saturates nearly atdm523 for a,24 for d
52 anddm522 for a,22 in d51 @Fig. 2~b!#. We look at
the distribution in more detail ind52 for small values of,.
On decreasinga from 21 a maximum appears at,'0.01
@Fig. 2~c!#, i.e., as, increases from zero the distributio
grows very rapidly as a power law, reaches a maximum,
then decays. For a particular value ofa, D(,) scales nicely
with the durationT of growth as

D~, !;T 1/2G~,T 1/2!. ~7!

In Fig. 2~c! we plot these collapsed data which fit very we
to the following form of the scaling function:

G~x!5a8xb8/~x21c8!d8. ~8!

Values of all the constantsa8,b8,c8,d8 of this expression are
dependent ona. No such maximum inD(,) at the small
values of, is observed in one dimension.

We studied the cumulative degree distributionF(k)
5*k

`P(k)dk;k12g and assume the following scaling b
havior:

F~k,T !;T hF~k/T z!, ~9!

where the scaling functionF(x)→x12g when x!1 and
F(x)→const for x@1. This implies thatg511h/z. For
example, fora521 at d52 a good data collapse is ob
tained forh51 andz51/2 givingg53 and the same resu
is obtained for all values ofa.21. However, fora,21
06611
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we see a stretched exponential variationP(k);exp(2kc(a))
andc(a) increases to 1, i.e., to a pure exponential form
a52`. It, therefore, appears that the transition from t
stretched exponential to the scale-free behavior is perh
taking place at the specific value ofac521 in d52, and in
general, atac512d in thed dimension. However, a simila
study in one dimension shows all indications thatac is very
likely to be around20.5, certainly greater than21 but
seems to be smaller than zero. Therefore, we conjecture
ac512d though our numerical analysis in one dimensi
does not fully confirm this prediction. At the opposite lim
of a5`, i.e., when each node is connected to its farth
neighbor, the degree distribution is found to be exponentia
decaying and it appears that it happens only ata5` since
even ata540 we found scaling of the distribution.

We note a few more important properties of this netwo
nearac . The first moment of the degree distribution^k& is
exactly 2 since the sum of the degrees of all nodes isT,

FIG. 3. For networks withT5212, variations of~a! the probabil-
ity P(1) of a node of degree 1 and~b! average length,(a) of a link
with a. Opaque circles are ford51 and the filled circles are for
d52.

FIG. 4. Average degree of the node^k(t,T )& at time t for a
two-dimensional network of durationT5214 multiplied by t1/2 is
plotted for differenta. For a53,2,1,21 plots are parallel to thet
axis for large t. The curves deviate fora523/2, 22, and
for 23.
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counting each link twice, whereas the number of nodesT
11. As the cutoff of the degree distribution varies asT z the

^k& is defined as*1
T z

kP(k)dk/*1
T z

P(k)dk. Assumingg.2
the mean is (g21)/(g22) in the largeT limit. This gives
g53 correctly. Since each node has exactly one outgo
link, the mean number of incoming links averaged over
nodes must be equal to 1. The fraction of nodes with nonz
incoming links should be 12P(1). In Fig. 3~a! we plot the
variation of P(1) with a. This varies from 0.4777 ata5
2` to very close to 2/3 fora.ac . Therefore, the mean
number of incoming links per nodêkin(a)& averaged over
all nodes withkinÞ0 is T /@(12P(1))T #53 for a.ac .
This is checked numerically. We also keep track of the va
tion of average link lengtĥ,(a)& as the characteristic dis
tance of this system which is shown in Fig. 3~b!. Since for
a,ac smaller links are more probable,^,(a)& is very small
and approaches zero asT 21/2. For a.ac , ^,(a)& grows
with a. Finally, the fraction of anisotropic linksf (,.1/2)
also grows from zero ata5ac .

The average degree of a node which is introduced at
time t to a network which has grown up to a timeT is de-
noted by^k(t,T )& and follows a power law variation witht
at larget values as:̂ k(t,T )&;tb. For the BA network,b
51/2 is obtained@11# and it is connected to the degree d
om
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tribution exponentg by the relation:b(g21)51. We have
calculated̂ k(t,T )& in two dimensions for different values o
a and in Fig. 4 we plot̂ k(t,T )&t1/2 vs t on a linear scale. We
observe that for all values ofa.21 the plot is horizontal,
implying thatb51/2 for this range ofa values.

To summarize, we studied a growing random netwo
where the attachment probabilityp i to a previous nodei
depends jointly on the degree of the nodeki as well as on the
a-th power of the link length, asp i;ki,

a. By tuninga we
find that for a,ac the degree distribution of the resultin
network is stretched exponential whereas fora.ac the net-
work is scale free. We also observe that the link length d
tribution follows a power law:D(,);,d for the whole range
of the parametera in contrast to the Waxman’s exponenti
distribution @12#. The exponentd grows linearly witha for
a>22d and saturates at2(d11) for a,22d. Our inter-
esting observation is whena52d the network has the prop
erty of real Internet network where the link length distrib
tion varies inversely with the link length.
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